Auto-kernel using multilayer perceptron
نویسنده
چکیده
This work presents a constructive method to train the multilayer perceptron layer after layer successively and to accomplish the kernel used in the support vector machine. Data in different classes will be trained to map to distant points in each layer. This will ease the mapping of the next layer. A perfect mapping kernel can be accomplished successively. Those distant mapped points can be discriminated easily by a single perceptron.
منابع مشابه
Generative Adversarial Source Separation
Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a parametric assumption on the output density. We show on a speech source separation experiment that, a multilayer perceptron trained with a Wasserstein-...
متن کاملMultilayer perceptron architectures for data compression tasks
Different kinds of Multilayer Perceptrons, using a back-propagation learning algonthm, have been used to perform data compression tasks. Depending upon the architecture and the type of problern learned to solve ( classification or auto-association), the networks provide different kinds of dimensionality reduction preserving different properties of the data space. Some experiments show that usmg...
متن کاملOptimal Multilayer Perceptron Structure For Classification of HIV Sub-Type Viruses
The feature of HIV genome is in a wide range because of it is highly heterogeneous. Hence, the infection ability of the virus changes related with different chemokine receptors. From this point, R5 and X4 HIV viruses use CCR5 and CXCR5 coreceptors respectively while R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the co...
متن کاملComparison of ARMA and Multilayer Perceptron Based Methods for Economic Time Series Forecasting
In this paper two popular time series prediction methods – the Auto Regression Moving Average (ARMA) and the multilayer perceptron (MLP) – are compared while forecasting seven real world economical time series. It is shown that the prediction accuracy of both methods is poor in ill-structured problems. In the well-structured cases, when prediction accuracy is high, the MLP predicts better provi...
متن کاملUsing Kernel PCA for Initialisation of Nonlinear Factor Analysis
The nonlinear factor analysis (NFA) method by Lappalainen and Honkela (2000) [2] is initialised with linear principal component analysis (PCA). Because of the multilayer perceptron (MLP) network used to model the nonlinearity, the method is susceptible to local minima and therefore sensitive to the initialisation used. As the method is used for nonlinear separation, the linear initialisation ma...
متن کامل